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Abstract: - In this paper we propose a method to implement in FPGA circuits, a feedforward neural network 
with on-chip delta rule learning algorithm. The method implies the building of a neural network by generic 
blocks designed in Mathworks’ Simulink environment. The main characteristics of this solution are on-chip 
learning algorithm implementation and high reconfiguration capability and operation under real time 
constraints. 
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1   Introduction 
In response to highly parallelism, modularity and 
dynamic adaptation, the artificial neural network 
(ANN) become the most explored data processing 
algorithms. In addition to this, the digital hardware 
implementation of ANNs in reconfigurable 
computing architectures like FPGAs circuits, 
become the easiest and fastest way to reconfigure in 
order to adapt the weights and topologies of an 
ANN. 
In this paper we present an extendable digital 
architecture for the implementation of a multilayer 
feedforward networks (MLF) using field 
programmable gate arrays (FPGAs) and propose a 
design methodology that allows the system designer 
to concentrate on a high level functional 
specification. For this reason we developed a new 
library Simulink block set constituted by Simulink 
Xilinx blocks and VHDL blocks. With these new 
created blocks, the designer will be able to develop 
the entire neural network by parameterize the ANN 
topologies as number of neurons and layers. 
The implementation goal is achieved using the 
Mathworks’ Simulink environment for functional 
specification and System Generation to generate the 
VHDL code according to the characteristics of the 
chosen FPGA device. 
 
 
2   Multilayer Feedforward Network 
The MLP network generally gives quickly results, is 
efficient with information processing, and learns by 
presenting examples; but sometimes is difficult to 
choose the optimal network parameters and training 
procedures for a given situation. From this reason, 

the building of a neural network with customizable 
blocks can give a higher reconfiguration capability 
and operation of the neural network under real time 
constraints. 
The most difficulty parts in FPGA implementation 
of the MLP network are the sigmoid function and 
the calculus algorithm (Delta rule) of the weights, 
[1]. 
In MLP networks, the basic units, the neurons, are 
organized in, at least, 3 layers: one input layer, one 
output layer and one or more intermediate, hidden 
layers. Networks are typically fully connected, i.e., 
all outputs of a layer are connected by synapses to 
all inputs of the following layer. Only the hidden 
and the output layers include processing units, 
whereas the input layer is used just for data feeding. 
 
The adopted neuron model is classical one’s and is 
basically made of two blocks: First block is 
responsible for calculating the summation of all 
inputs and bias, after multiplying each one by it's 
weight, giving the net value: 
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The later block computes the neuron output, based 
on its net value. It models the firing nature of the 
neuron that activates once the sum is above of a 
given threshold. Because the backpropagation 
learning algorithm requires an activation functions 
that is continuous and differentiable, the sigmoid 
function was chosen, [2]: 
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The backpropagation learning algorithm consists of 
four different steps: (forward) propagation, error 
check, back propagation (BP) and weights update. 
First, the input values are propagated forward, using 
equations (1) and (2), to obtain the actual outputs. 
Second step requires calculating the average of the 
total as a sum of squared individual errors.  
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where O is the actual output, T is the desired value 
for a given pattern p. 
Next, if the total error is greater then a given 
threshold the value of the weights must be adjusted 
in order to minimize the error function. This 
minimization is done in idea to make changes in the 
weight proportional to the negative of the derivative 
of the error - backpropagation step, [3], [4], [5], [6]. 
In the backpropagation step, the first thing to do is to 
obtain the gradient of the output neurons. This is 
done through: 
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we obtained 
( ) (k k kT O f net) δ ′= − (7) 

where O is the actual output, T is the desired value 
and f’(net) is the first derivative of the activation 
function and k is the number of  the output neurons.  
In the case of the sigmoid function the derivative is 
given by: 

( ) ( )(1 ( )) (1 )f net f net f net O O′ = − = −  (8) 
This value is then propagated backwards in order to 
obtain the gradient for each of the hidden layer 
neurons. For a given hidden neuron, its gradient is 
given by 
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The last step consists of updating the weights in 
order to minimize the error. 
In the case of the neurons from the output layer the 
formula that gives the change of corresponding 
weight is: 

k kw y jηδΔ = (10) 

where  is the output of the neuron j from the 
previous layer. 

jy

In the case of the neurons from the hidden layers the 
change of corresponding weight is: 

k jv ziηδΔ = (11) 

where  is the output of the neuron i from the 
previous layer. 

iz

Because the BP learning algorithm is an iterative 
process the new epochs are repeated until the 
network is trained enough, i.e., until the error 
between the actual and the desired outputs is lower 
than a given threshold. 
 
 
3   Neural Network Blockset Design 
In order to learn on-chip, the Mc Culloch - Pitts 
neuron model, i.e. each of the input vector 
components xi is multiplied with the corresponding 
weight wij, and these products are summed up 
yielding the net linear output, upon which the 
threshold activation function is applied to obtain the 
activation, was modified to make the calculus of the 
weights according to a certain learning rule and to 
update the new weights into a weight memory block, 
figure 1. 
 

  
Fig.1. Block level representation of the neuron with 

on-chip learning 
 
The parallelism adopted is a node parallelism one 
and requires one multiplier per neuron; therefore all 
neurons will work in parallel. If data inputs are 
memorized in a single memory block, the weights 
storage will be private for each neuron because all 
the neurons have to access their correspondent 
weight memories at the same time. 
The proposed model is constituted by two major 
blocks: a control logic bloc and a processing block. 
The control logic block will manage the control 
signal of the processing bloc in order to initialize 
and command the processing components. 
The processing block is designed to calculate the 
neural output, the weights according to learning rule 
adopted, in this case Delta rule, and to update these 
weights. 
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Fig. 2 Neural network with one hidden layer 

 
3.1 Control logic block 
The control logic block is designed to control the 
processing units, the neurons, from neural layers. In 
this way this block will gives the control signal to 
the multipliers, summation and RAM blocks in 
order to compute the net value of the neuron. 
Because, hidden layer has to subordinate to the 
previous layer there are 2 different type of control 
logic block: one for the first layer (first hidden layer) 
and one for the following layers (the following 
hidden layers and for the output layer), fig 3 and fig 
4. 
 

 
Fig 3. Control logic block for the first layer 

 

 
Fig 4. Control logic block for the subsequent layers 

 

The control logic block will also control the data 
memory, used as a buffer for data that comes from 
outside (sensors output), in order to give the right 
address of the data that will fed the input layer of the 
neural network.  
 
 
3.2 Processing blocks 
The processing blocks are the main blocks of the 
design. Its incorporate both the artificial neuron and 
the logic for on-chip learning algorithm. 
 
3.2.1   Neuron model  
The structure of the artificial neuron consist in one 
memory block, for data samples, one MAC unit and 
an activation unit, fig 5 
 

 
Fig 5. Architecture of the neuron 

 
For implementation in FPGA of the activation 
function was used the PLAN approximation 
(Piecewise Linear Approximation of a Nonlinear 
function), proposed by Amin, Curtis and Hayes–Gill 
[7]. The PLAN approximation uses digital gates to 
directly transform from x to y. The approximation of 
the sigmoid function is presented in Table 1. The 
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calculations need only be performed on the absolute 
value of the input x. 
 
 
Table 1 

Condition Approximation 
5x ≥  1y =  

2.375 5x≤ <  0.03125 0.84375y x= ⋅ +  
1 2.375x≤ <  0.125 0.625y x= ⋅ +  
0 1x≤ <  0.25 0.5y x= ⋅ +  

 
The error function of the sigmoid function 
approximations is presented below, fig. 6.[8] 
 

 
Fig 6, Error function of sigmoid function 

approximations 
 

In figure 7 is shown the hardware architecture of the 
PLAN approximation of sigmoid function. The 
architecture includes beside comparators, 
multipliers, multiplexers and adders blocks, a black 
box that contains a VHDL file that control the 
multiplexer outputs data. 
 

 
Fig. 7. The hardware architecture of the PLAN 

approximation of sigmoid function 
 

3.3.2   Error check block  
Another important block is the Error check block 
that deals with the calculus of the total error, the 
comparing with the given threshold Emax and the 
calculus of the error signal of the kth neuron, 
(delta_k), fig. 8 
 
 

 
Fig. 8 Hardware architecture of the Error check 

block 
 
3.3.3   Calculus block of the output layer weights 
This block deals with the calculus of the new 
weights of the output layer. 
The block implements the calculus formula of the 
weights according to the above formula (10). The 
parallelism is the layer’s one because the calculus is 
done in the same time for all the neurons from the 
same layer, fig. 9. 
The block is reconfigurable and resizable and 
depends of number of neurons from the output layer. 
Because the weight from the previous layers 
depends on the former weights of the output layer 
this block will begin to calculate and update the new 
weights only after the weights from the previous 
layer ware calculated.   
 

 
Fig. 9 Hardware implementation of the weights 

calculus block 
 
3.3.3   Calculus block of the hidden layer weights 
This block contains in fact other three blocks that 
will calculate the weights according to the above 
formulas ec. (9), (10) and (11), fig. 10 
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Fig. 10 Block configuration of the Calculus block of 

the hidden layer weights 
 
All blocks implied in the calculus are resizable and 
can be changed by the parameters given from 
outside.  
Every calculus blocks strictly respects the calculus 
algorithm presented above for the each layer apart 
 

 
Fig. 11 Hardware implementation of the Delta_y 

calculus block 
 

 
Fig. 12 Hardware implementation of the Delta_v 

calculus block 
 

 
Fig. 13 Hardware implementation of the changed 

weights 
 

The above figures presents the implementation of 
the following formulas: 

1
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for the Delta_y calculus block, figure 11, 
ok iv zηδΔ =  (13) 

for the Delta_v calculus block, where zi are the 
values of the input pattern, figure 12 
and 

new oldv v v= + Δ  (14) 
for the calculus of the updated weight, figure 13. 
 
 
4 Conclusion 
We have presented hardware architecture of 
artificial neuron with on-chip learning controlled by 
a generic control unit described in VHDL code. This 
method uses minimal hardware resources for 
implementation of this kind of artificial neuron. The 
main advantage of this solution is high modularity 
and versatility in neural network designing. 
In order to design and to implement the neuron we 
used the Mathworks’ Simulink environment for 
functional specification, System Generation to 
generate the VHDL code according to the 
characteristics of the chosen FPGA device and ISE 
Xilinx to simulate the design at different stages of 
implementation and to generate the bit file. 
The neuron designed is a generic module and can be 
used to design neural networks that have the 
following features: 

- the training  is on-line; 
- the learning is on-chip; 
- all weights have been initialized prior to the 

start of the learning process; 
- the learning parameter  must be specified 

precisely; 
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- there must be some type of normalization 
associated with the increase of the weight or 
else wij can become infinite; 

- the initialization of the neurons number per 
layer, number of layers, data and weights 
RAMs must be done by setting the variables 
from the Function Block Parameters from 
Matlab environment. 

The design is implemented into Digilab 2E (D2SB) 
development board featuring the Xilinx Spartan 2E 
XC2S200EPQ208-6 FPGA. This chip has 2352 
slices (control unit which includes two 4-inputs 
look-up tables (LUT) and two flip-flops) and 14 
block RAMs. The resources were estimated for a 
neural network with one  by Simulink Resource 
Estimator Block and are shown in fig. 14 
 

 
Fig 14. The resource estimation by Simulink 

Resource Estimator 
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