
Hardware implementation of a MLP network with on-chip learning

ALIN TISAN, STEFAN ONIGA, CIPRIAN GAVRINCEA
Electrotechnical Department

North University of Baia Mare
Victor Babes st., no 62A, Baia Mare

ROMANIA

Abstract: - In this paper we propose a method to implement in FPGA circuits, a feedforward neural network
with on-chip delta rule learning algorithm. The method implies the building of a neural network by generic
blocks designed in Mathworks’ Simulink environment. The main characteristics of this solution are on-chip
learning algorithm implementation and high reconfiguration capability and operation under real time
constraints.

Key-Words: - MLP, learning on-chip, Delta rule, ANN, FPGA

1 Introduction
In response to highly parallelism, modularity and
dynamic adaptation, the artificial neural network
(ANN) become the most explored data processing
algorithms. In addition to this, the digital hardware
implementation of ANNs in reconfigurable
computing architectures like FPGAs circuits,
become the easiest and fastest way to reconfigure in
order to adapt the weights and topologies of an
ANN.
In this paper we present an extendable digital
architecture for the implementation of a multilayer
feedforward networks (MLF) using field
programmable gate arrays (FPGAs) and propose a
design methodology that allows the system designer
to concentrate on a high level functional
specification. For this reason we developed a new
library Simulink block set constituted by Simulink
Xilinx blocks and VHDL blocks. With these new
created blocks, the designer will be able to develop
the entire neural network by parameterize the ANN
topologies as number of neurons and layers.
The implementation goal is achieved using the
Mathworks’ Simulink environment for functional
specification and System Generation to generate the
VHDL code according to the characteristics of the
chosen FPGA device.

2 Multilayer Feedforward Network
The MLP network generally gives quickly results, is
efficient with information processing, and learns by
presenting examples; but sometimes is difficult to
choose the optimal network parameters and training
procedures for a given situation. From this reason,

the building of a neural network with customizable
blocks can give a higher reconfiguration capability
and operation of the neural network under real time
constraints.
The most difficulty parts in FPGA implementation
of the MLP network are the sigmoid function and
the calculus algorithm (Delta rule) of the weights,
[1].
In MLP networks, the basic units, the neurons, are
organized in, at least, 3 layers: one input layer, one
output layer and one or more intermediate, hidden
layers. Networks are typically fully connected, i.e.,
all outputs of a layer are connected by synapses to
all inputs of the following layer. Only the hidden
and the output layers include processing units,
whereas the input layer is used just for data feeding.

The adopted neuron model is classical one’s and is
basically made of two blocks: First block is
responsible for calculating the summation of all
inputs and bias, after multiplying each one by it's
weight, giving the net value:

1

N

k k
k

net bias w x
=

= +∑ (1)

The later block computes the neuron output, based
on its net value. It models the firing nature of the
neuron that activates once the sum is above of a
given threshold. Because the backpropagation
learning algorithm requires an activation functions
that is continuous and differentiable, the sigmoid
function was chosen, [2]:

1()
1 netoutput net

e−=
+

(2)

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 162

The backpropagation learning algorithm consists of
four different steps: (forward) propagation, error
check, back propagation (BP) and weights update.
First, the input values are propagated forward, using
equations (1) and (2), to obtain the actual outputs.
Second step requires calculating the average of the
total as a sum of squared individual errors.

21 ()
2

p p

p p
E E T O= = −∑ ∑ p (3)

where O is the actual output, T is the desired value
for a given pattern p.
Next, if the total error is greater then a given
threshold the value of the weights must be adjusted
in order to minimize the error function. This
minimization is done in idea to make changes in the
weight proportional to the negative of the derivative
of the error - backpropagation step, [3], [4], [5], [6].
In the backpropagation step, the first thing to do is to
obtain the gradient of the output neurons. This is
done through:

k

k k

OE E
net O net

δ ∂∂ ∂
= − = −

∂ ∂ ∂ k

(4)

For

() k

k

Of net
net
∂′ =
∂

(5)

and

()k k
k

E T O
O
∂

= − −
∂

(6)

we obtained
() (k k kT O f net) δ ′= − (7)

where O is the actual output, T is the desired value
and f’(net) is the first derivative of the activation
function and k is the number of the output neurons.
In the case of the sigmoid function the derivative is
given by:

() ()(1 ()) (1)f net f net f net O O′ = − = − (8)
This value is then propagated backwards in order to
obtain the gradient for each of the hidden layer
neurons. For a given hidden neuron, its gradient is
given by

1
()

K

j j j k
k

kjf net wδ δ
=

′= ∑ (9)

The last step consists of updating the weights in
order to minimize the error.
In the case of the neurons from the output layer the
formula that gives the change of corresponding
weight is:

k kw y jηδΔ = (10)

where is the output of the neuron j from the
previous layer.

jy

In the case of the neurons from the hidden layers the
change of corresponding weight is:

k jv ziηδΔ = (11)

where is the output of the neuron i from the
previous layer.

iz

Because the BP learning algorithm is an iterative
process the new epochs are repeated until the
network is trained enough, i.e., until the error
between the actual and the desired outputs is lower
than a given threshold.

3 Neural Network Blockset Design
In order to learn on-chip, the Mc Culloch - Pitts
neuron model, i.e. each of the input vector
components xi is multiplied with the corresponding
weight wij, and these products are summed up
yielding the net linear output, upon which the
threshold activation function is applied to obtain the
activation, was modified to make the calculus of the
weights according to a certain learning rule and to
update the new weights into a weight memory block,
figure 1.

Fig.1. Block level representation of the neuron with

on-chip learning

The parallelism adopted is a node parallelism one
and requires one multiplier per neuron; therefore all
neurons will work in parallel. If data inputs are
memorized in a single memory block, the weights
storage will be private for each neuron because all
the neurons have to access their correspondent
weight memories at the same time.
The proposed model is constituted by two major
blocks: a control logic bloc and a processing block.
The control logic block will manage the control
signal of the processing bloc in order to initialize
and command the processing components.
The processing block is designed to calculate the
neural output, the weights according to learning rule
adopted, in this case Delta rule, and to update these
weights.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 163

Fig. 2 Neural network with one hidden layer

3.1 Control logic block
The control logic block is designed to control the
processing units, the neurons, from neural layers. In
this way this block will gives the control signal to
the multipliers, summation and RAM blocks in
order to compute the net value of the neuron.
Because, hidden layer has to subordinate to the
previous layer there are 2 different type of control
logic block: one for the first layer (first hidden layer)
and one for the following layers (the following
hidden layers and for the output layer), fig 3 and fig
4.

Fig 3. Control logic block for the first layer

Fig 4. Control logic block for the subsequent layers

The control logic block will also control the data
memory, used as a buffer for data that comes from
outside (sensors output), in order to give the right
address of the data that will fed the input layer of the
neural network.

3.2 Processing blocks
The processing blocks are the main blocks of the
design. Its incorporate both the artificial neuron and
the logic for on-chip learning algorithm.

3.2.1 Neuron model
The structure of the artificial neuron consist in one
memory block, for data samples, one MAC unit and
an activation unit, fig 5

Fig 5. Architecture of the neuron

For implementation in FPGA of the activation
function was used the PLAN approximation
(Piecewise Linear Approximation of a Nonlinear
function), proposed by Amin, Curtis and Hayes–Gill
[7]. The PLAN approximation uses digital gates to
directly transform from x to y. The approximation of
the sigmoid function is presented in Table 1. The

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 164

calculations need only be performed on the absolute
value of the input x.

Table 1

Condition Approximation
5x ≥ 1y =

2.375 5x≤ < 0.03125 0.84375y x= ⋅ +
1 2.375x≤ < 0.125 0.625y x= ⋅ +
0 1x≤ < 0.25 0.5y x= ⋅ +

The error function of the sigmoid function
approximations is presented below, fig. 6.[8]

Fig 6, Error function of sigmoid function

approximations

In figure 7 is shown the hardware architecture of the
PLAN approximation of sigmoid function. The
architecture includes beside comparators,
multipliers, multiplexers and adders blocks, a black
box that contains a VHDL file that control the
multiplexer outputs data.

Fig. 7. The hardware architecture of the PLAN

approximation of sigmoid function

3.3.2 Error check block
Another important block is the Error check block
that deals with the calculus of the total error, the
comparing with the given threshold Emax and the
calculus of the error signal of the kth neuron,
(delta_k), fig. 8

Fig. 8 Hardware architecture of the Error check

block

3.3.3 Calculus block of the output layer weights
This block deals with the calculus of the new
weights of the output layer.
The block implements the calculus formula of the
weights according to the above formula (10). The
parallelism is the layer’s one because the calculus is
done in the same time for all the neurons from the
same layer, fig. 9.
The block is reconfigurable and resizable and
depends of number of neurons from the output layer.
Because the weight from the previous layers
depends on the former weights of the output layer
this block will begin to calculate and update the new
weights only after the weights from the previous
layer ware calculated.

Fig. 9 Hardware implementation of the weights

calculus block

3.3.3 Calculus block of the hidden layer weights
This block contains in fact other three blocks that
will calculate the weights according to the above
formulas ec. (9), (10) and (11), fig. 10

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 165

Fig. 10 Block configuration of the Calculus block of

the hidden layer weights

All blocks implied in the calculus are resizable and
can be changed by the parameters given from
outside.
Every calculus blocks strictly respects the calculus
algorithm presented above for the each layer apart

Fig. 11 Hardware implementation of the Delta_y

calculus block

Fig. 12 Hardware implementation of the Delta_v

calculus block

Fig. 13 Hardware implementation of the changed

weights

The above figures presents the implementation of
the following formulas:

1

(1) ()(1)
K

y j j k k k k
k

y y T O O O wδ
=

= − − −∑ kj (12)

for the Delta_y calculus block, figure 11,
ok iv zηδΔ = (13)

for the Delta_v calculus block, where zi are the
values of the input pattern, figure 12
and

new oldv v v= + Δ (14)
for the calculus of the updated weight, figure 13.

4 Conclusion
We have presented hardware architecture of
artificial neuron with on-chip learning controlled by
a generic control unit described in VHDL code. This
method uses minimal hardware resources for
implementation of this kind of artificial neuron. The
main advantage of this solution is high modularity
and versatility in neural network designing.
In order to design and to implement the neuron we
used the Mathworks’ Simulink environment for
functional specification, System Generation to
generate the VHDL code according to the
characteristics of the chosen FPGA device and ISE
Xilinx to simulate the design at different stages of
implementation and to generate the bit file.
The neuron designed is a generic module and can be
used to design neural networks that have the
following features:

- the training is on-line;
- the learning is on-chip;
- all weights have been initialized prior to the

start of the learning process;
- the learning parameter must be specified

precisely;

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 166

- there must be some type of normalization
associated with the increase of the weight or
else wij can become infinite;

- the initialization of the neurons number per
layer, number of layers, data and weights
RAMs must be done by setting the variables
from the Function Block Parameters from
Matlab environment.

The design is implemented into Digilab 2E (D2SB)
development board featuring the Xilinx Spartan 2E
XC2S200EPQ208-6 FPGA. This chip has 2352
slices (control unit which includes two 4-inputs
look-up tables (LUT) and two flip-flops) and 14
block RAMs. The resources were estimated for a
neural network with one by Simulink Resource
Estimator Block and are shown in fig. 14

Fig 14. The resource estimation by Simulink

Resource Estimator

References:

[1] E. Fiesler, R Beale Handbook of neural network,

Oxford University Press, 1997.
[2] A. Singh, Design & Implementation of Neural

Hardware University School of Information
Technology, GGS Indraprastha University, Delhi
http://www.geocities.com/aps_ipu/papers/synops
is.pdf, 2005.

[3] A., Bernatzki, W, Eppler, Interpretation of
Neural Networks for Classification Tasks.
Proceedings of EUFIT 1996, Aachen, Germany,
http://fuzzy.fzk.de/eppler
/postscript/eufit.ps.2005

[4] A. Savran, S. Unsal. Hardware Implementation
of a Feedforward Neural Network using FPGAs.
International Conference on Electrical and
Electronics Engineering. Bursa, December 2003.

[5] Yihua Liao. Neural Networks in Hardware: A
Survey. Department of Computer Science,
University of California, Davis.

[6] J. Zhu, P. Sutton. FPGA Implementations of
Neural Networks – a Survey of a Decade of
Progress. Proceedings of 13th International
Conference on Field Programmable Logic and
Applications (FPL 2003), Lisbon, Sep 2003.

[7] Amin, H., Curtis, K.M., and Hayes–Gill, B.R.:
Piecewise linear approximation applied to
nonlinear function of a neural network, IEE
Proc. Circuits, Devices Sys., 1997, 144, (6), pp.
313–317

[8] M.T. Tommiska Efficient digital implementation
of the sigmoid function for reprogrammable
logic. IEE Proceedings – Computers and Digital
Techniques 150, number 6, pages 403-411.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 167

